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Direct numerical simulation of three-dimensional
coherent structure in plane mixing layer”
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Abstract The three-dimensional temporally evolving plane mixing layer is simulated by directly solving the
Navier-Stokes equations using pseudo-spectral method. The process of loss of stability, and the formation paring, and
development of vortex are presented. The simulated result shows that the evolving characteristics of coherent structure are

important mechanism of growing and entrainment of mixing layer.
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Plane mixing layer as a classical model for the study of turbulence in free shear layers has been
extensively studied in the past decades. But research fields were mostly limited to the basic solutions
and stability of laminar flow and turbulence shear flows, etc. With the improvement in experimental
techniques and the development of computer science and technology, several investigations have been
focused on the detailed structure and evolving characteristics of vortex via experiment, theoretical
analysis, and direct numerical simulation. For example, Riley and Metcalfe'!’ directly simulated the
mixing layer with low Reynolds number and found that the momentum thickness grew linearly approxi-
mately with time, and flow fields had similar average velocity profiles. Cain et al. D introduced coor-
dinate transform to simplify infinite flow region into finite computational region, which showed the pro-
cess of large scale structures by adopting large eddy simulation. Lasheras and Choil‘ %! experimentally
studied the relations between vortex development and instability, and obtained the results that the
characteristic time of instability in two-dimension is far less than that in three-dimension. Besides,
Rogers and Moser described numerically the detailed rollupm and self-similar layerm ; Wu and Shil®
directly simulated the coherent structure of a two-dimensional mixing layer using the method of map-
ping functions. Fu and Mal® introduced high order accuracy discretization and group velocity control
to study how coherent structures are affected by the shocks induced by vortex pairing. Although the
same conclusions were drawn from numerical simulation, experimental study and theoretical analysis,
no thorough dynamical description of mixing layer flow is available. In particular, there is still contro-

versy over the development of three-dimensionality and the transition to turbulence. So this problem
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remains to be further investigated .

The process of vortex rollup and pairing as well as the evolving characteristics of coherent struc-
ture is presened through direct numerical simulation of temporally evolving mixing layer. It is of mo-

mentous significance to understand the nonlinear development of three-dimensionality .
1 Numerical model
1.1 Governing equations

Figure 1 shows the plane mixing layer consisting of two parallel streams with different velocities
U, and U,(U, > U,). The non-dimensional continuity and momentum equations for an incompress-

ible flow with no body force are

v _ "
at_F—VH+R"VV’ .
V-V =0, (2)
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Fig. 1 Schematic of plane mixing layer.
where F = V x @, II is the total pressure,vorticity @ =V x V, Reynolds number Re = f]ﬁo/ v.
U= (U, + U,y)/2 and 0, (the initial momentum thickness) will be taken as characteristic velocity

and length, respectively.
1.2 [Initial conditions

The initial conditions are described as follows. (i) The base flow with hyperbolic-tangent profile
is ug=1+0.5A U/Uth(y) , where AU = (U, -~ U,) (ii) The streamfunction of two-dimensional
disturbance is

J(x,y) = AjRe($,(y)exp * (iayx)) + Ay Re($,(y)expliayx)),
where the amplitudes A; =0.15 and A, =0.08, Re denotes an operator getting the real part from a

complex, $;(y) and $,(y) are the normalized eigenfunctions with respect to a; and a,"]

respectiv-
ely. Corresponding to the most unstable perturbations, the fundamental wave number a; is set to be
0.4446, and thesubharmonic unstable wave number a, satisfies the condition of resonance (a, = a;/

2).

(iii) The streamwise vorticity of initial three-dimensional perturbation is w, = Ajexp( - y2/ 2):

sin(a3z), where amplitude A; =0.05, and spanwise wave number a5 = 0.67.
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2 Numerical procedure

A pseudo-spectral method is employed to solve the governing equations. In the homogeneous di-
rections (x, z), all the quantities are expressed by Fourier expansions. The periodicity lengths in the
streamwise and spanwise directions are L, =2x/a, and L, =27 /a5, respectively. In transverse di-
rection (y), considering that the perturbation attenuates fast in this direction, the solutions in this di-
rection can also be represented by the same expansion after the introduction of mirror image extension .
The half periodicity length L, = 25. The integral domain D is defined as(0, L,) x ( - L,/2, L,/2)
x (0, L,); the number of collocation points in this computational domain is I x J x K =256 x 256 x
64.

All the quantities in Eq.(2) are expressed by Fourier expansions in x, y and z directions as

follows ;
V(x,t) = D1 D) vk, t)explike - x), (3)
I(x,t) = 2 Z n(k,t)exp(ika + x), (4)
F(x,t) = >, D, D) f(k,t)exp(ike * x), (5)

kg2 1hll2 1klck2

in which v(k,t), n(k,t) and f(k,t) are the Fourier coefficients of velocity V(x,t), total pres-
sure IT(x,t) and non-linearity term F(x,t) respectively, and x = (x,y,z),k = (ky, ky, k3),

ko = 27k,/L,, 2nk,/L,, 2rky/L,) and i= ~/ - 1.

Substitute Eqs. (3) ~ (5) into Eqs. (1) and (2) to obtain all the Fourier coefficients above.
Then all spatial quantities can be determined by Fourier reverse transformation. Time advancement of
the equations is completed by the two-level explicit Adams-Bashforth scheme for the non-linear term
f(k,t) and the implicit Crank-Nicolson method for other terms, and time step is set to be At =
0.02, and Re =250.

3 Results and discussions

Figure 2 shows instantaneous flow field (#,v) on the plane z = L,/4. Periodic spanwise vortex
rollup resulting from Kelvin-Helmholtz instability can be clearly seen in Fig. 2(a). The periodic
structures lose stability again when the perturbations strengthened, then pairing and coalition, of vortex

occurred as shown in Figure 2 (c,d).

The contours of spanwise vorticity on the plane z = L,/4 is shown in Fig. 3, where the develop-
ment of the first pairing of two adjacent Kelvin-Helmholtz rollers is caused by the initial perturbations
on the subharmonic unstable wave number. During the pairing, a pair of well-developed rollers come
together, corotate and eventually amalgamate to form a new bigger roller. The spanwise vortices are
depleted in the braid region (the region between pairings) while the pairing is occurring. However,

after the pairing, the spanwise vortices are advected back into the braid region, which is called over-
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Instantaneous flow field in the plane z

Fig. 2

saturation .

dimensional contours of streamwise vorticity. The solid lines represent

Figure 4 shows the three

the positive values of the vorticity and the dashed lines represent the negativeones. Due to the symme-

, the figure just shows half periodic length in this direction for an easy

try of perturbations in spanwise

view. The mechanism of formation and development of streamwise vorticity is subject to three-dimen-

sional instability. It can be found that counter-rotating streamwise rib vortices first occur in braid re-

which is in good agreement

21 Besides the ribs
observed in the figure when T

gion and then extend from the bottom of one roller to the top of the next,

, the quadrupoles are an-

Al

with the experimental observation by Lasheras and Choil

other kind of notable

25 ( dashed

vortices, which can be clearly

ing

line) . The quadrupole occurs in the core region with the initial streamwise tube cutting and depart

two quadrupoles come

lapsing,

me €

there because of the stretching of the forming rollers. With the t

60) . Afterwards, the streamwise

together, and the rib between them is extruded and turns short ( T
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Fig. 3 Contours of spanwise vorticity. (a) T=25, z=L,/4; (b) T=45, z=L/4; (¢) T=60, z=L,/4; (d) T=100,

z=L/4.

T=25

(a) =60 ()

=100

Fig. 4

Three-dimensional contours of streamwise vorticity .
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vortex tubes stretch and gradually become approximately vortex tube structures ( T = 100) . Finally,
small ribs are induced by larger ones, leading to vortices tubes’ gradual amalgamation. In core re-

gions, vortices are also regrouping and forming coherent pairing structures.
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